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Abstract

We consider regularized least-squares (RLS) with a Gaussian kernel. We
prove that if we let the Gaussian bandwidthσ → ∞ while letting the
regularization parameterλ → 0, the RLS solution tends to a polynomial
whose order is controlled by the relative rates of decay of1

σ2 andλ: if
λ = σ−(2k+1), then, asσ →∞, the RLS solution tends to thekth order
polynomial with minimal empirical error. We illustrate the result with an
example.

1 Introduction

Given a data set(x1, y1), (x2, y2), . . . , (xn, yn), the inductive learning task is to build a
functionf(x) that, given a newx point, can predict the associatedy value. We study the
Regularized Least-Squares (RLS) algorithm for findingf , a common and popular algo-
rithm [2, 4] that can be used for either regression or classification:

min
f∈H

1
n

n∑
i=1

(f(xi)− yi)2 + λ||f ||2K .

Here,H is a Reproducing Kernel Hilbert Space (RKHS) [1] with associated kernel function
K, ||f ||2K is the squared norm in the RKHS, andλ is a regularization constant controlling
the tradeoff between fitting the training set accurately and forcing smoothness off .
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Fig. 1. RLS classification accuracy results for the UCI Galaxy dataset over a range ofσ (along the
x-axis) andλ (different lines) values. The vertical labelled lines showm, the smallest entry in the
kernel matrix for a givenσ. We see that whenλ = 1e − 11, we can classify quite accurately when
the smallest entry of the kernel matrix is .99999.

The Representer Theorem [6] proves that the RLS solution will have the form

f(x) =
n∑

i=1

ciK(xi, x),

and it is easy to show [4] that we can find the coefficientsc by solving the linear system

(K + λnI)c = y, (1)

whereK is then by n matrix satisfyingKij = K(xi, xj).

We focus on the Gaussian kernelK(xi, xj) = exp(−||xi − xj ||2/2σ2).

Our work was originally motivated by the empirical observation that on a range of bench-
mark classification tasks, we achieved surprisingly accurate classification using a Gaussian
kernel with a very largeσ and a very smallλ (Figure 1; additional examples in [5]). This
prompted us to study the large-σ asymptotics of RLS. Asσ → ∞,K(xi, xj) → 1 for
arbitraryxi andxj . Consider a single test pointx0. RLS will first find c using Equation 1,
then compute

f(x0) = ctk

wherek is the kernel vector,ki = K(xi, x0). Combining the training and testing steps, we
see that

f(x0) = yt(K + λnI)−1k

BothK andk are close to1 for largeσ, i.e.Kij = 1 + εij andki = 1 + εi. If we directly
computec = (K + λnI)−1y, we will tend to wash out the effects of theεij term asσ



becomes large. If, instead, we computef(x0) by associating to the right, first computing
point affinities(K + λnI)−1k, then theεij andεj interact meaningfully; this interaction is
crucial to our analysis.

Our approach is to Taylor expand the kernel elements (and thusK andk) in 1/σ, noting
that asσ →∞, consecutive terms in the expansion differ enormously. In computing(K +
λnI)−1k, these scalings cancel each other out, and result in finite point affinities even as
σ → ∞. The asymptotic affinity formula can then be “transposed” to create an alternate
expression forf(x0). Our main result is that if we setσ2 = s2 andλ = s−(2k+1), then, as
s →∞, the RLS solution tends to thekth order polynomial with minimal empirical error.

We note in passing that our work is somewhat in the same vein as the elegant recent work
of Keerthi and Lin [3]; they consider Support Vector Machines rather than RLS, and derive
only the linear (first order) result.

2 Notation and definitions

Definition 1. Let xi be a set ofn + 1 points (0 ≤ i ≤ n) in a d dimensional space. The
scalarxia denotes the value of theath vector component of theith point.

Then× d matrix,X is given byXia = xia.

We think ofX as the matrix of training datax1, . . . , xn andx0 as an1×d matrix consisting
of the test point.

Let 1m, 1lm denote them dimensional vector andl × m matrix with components all1,
similarly for 0m, 0lm. We will dispense with such subscripts when the dimensions are clear
from context.

Definition 2 (Hadamard products and powers).For two l×m matrices,N,M , N �M
denotes thel×m matrix given by(N �M)ij = NijMij . Analogously, we set(N�c)ij =
N c

ij .

Definition 3 (polynomials in the data). Let I ∈ Zd
≥0 (non-negative multi-indices) and

Y be ak × d matrix. Y I is thek dimensional vector given by
(
Y I

)
i

=
∏d

a=1 Y Ia
ia . If

h : Rd → R thenh(Y ) is thek dimensional vector given by(h(Y ))i = h(Yi1, . . . , Yid).

Thed canonical vectors,ea ∈ Zd
≥0, are given by(ea)b = δab.

For example,Xkea is theath column ofX raised, elementwise, to thekth power and,
similarly, xkea

0 = xk
0a. The degree of the multi-indexI is |I| =

∑d
a=1 Ia. The vectorh(Y )

whereh(y) =
∑d

a=1 y2
a is referred to as||Y ||2.

In constrast, any scalar function,f : R → R, applied to any matrix or vector,A, will be as-
sumed to denote the elementwise application off . We will treaty → ey as a scalar function
(we have no need of matrix exponentials in this work, so the notation is unambiguous).

We can re-express the kernel matrix and kernel vector in this notation:

K = e
1

2σ2
Pd

a=1 2Xea (Xea )t−X2ea1t
n−1n(X2ea)t

(2)

= diag
(
e−

1
2σ2 ||X||

2
)

e
1

σ2 XXt

diag
(
e−

1
2σ2 ||X||

2
)

(3)

k = e
1

2σ2
Pd

a=1 2Xea xea
0 −X2ea11−1nx2ea

0 (4)

= diag
(
e−

1
2σ2 ||X||

2
)

e
1

σ2 Xxt
0e−

1
2σ2 ||x0||2 . (5)



3 Orthogonal polynomial bases

Let Vc = span{XI : |I| = c} andV≤c =
⋃c

a=0 Vc which can be thought of as the set of all
d variable polynomials of degreec, evaluated on the training data. Since the data are finite,
there existsb such thatV≤c = V≤b for all c ≥ b. Generically,b is the smallestc such that(

c + d
d

)
≥ n.

Let Q be an orthonormal matrix inRn×n whose columns progressively span theV≤c

spaces, i.e.Q = ( B0 B1 · · · Bb ) whereQtQ = I and colspan{( B0 · · · Bc )} =
V≤c. We might imagine building such aQ via the Gramm-Schmidt process on the vectors
X0, Xe1 , . . . , Xed , . . . XI , . . . taken in order of non-decreasing|I|.

Letting CI =
(

|I|
I1 . . . Id

)
be multinomial coefficients, the following relations between

Q,X, andx0 are easily proved.

(Xxt
0)
�c =

∑
|I|=c

CIX
I(xI

0)
t hence (Xxt

0)
�c ∈ Vc

(XXt)�c =
∑
|I|=c

CIX
I(XI)t hence colspan{(XXt)�c} = Vc

and thus,Bt
i (Xxt

0)
�c = 0 if i > c, Bt

i (XXt)�cBj = 0 if i > c or j > c, and
Bt

c(XXt)�cBc is non-singular.

Finally, we note that argminv∈V≤c
{||y − v||} =

∑
a≤c Ba(Bt

ay).

4 Taking the σ →∞ limit

We will begin with a few simple lemmas about the limiting solutions of linear systems.
At the end of this section we will arrive at the limiting form of suitably modified RLSC
equations.

Lemma 1. Let A(s) be a continuous matrix-valued function defined for0 < s < s0 for
somes0 ∈ R. If lims→0 A(s) = A0 andA0 is non-singular, thenlims→0 A(s)−1 = A−1

0 .

Proof. Givenε, selectδ < s0 such that||I − A(s)A−1
0 ||2 < min

{
1
2 , ε

2||A−1
0 ||2

}
for s < δ

(such aδ exists sincelims→0 A(s) = A0). Note that||I − A(s)A−1
0 ||2 < 1

2 , impliesA(s)
is non-singular. Then

A(s)−1 = A−1
0 (I − (I −A(s)A−1

0 ))−1 = A−1
0

I +
∑
i≥1

(I −A(s)A−1
0 )i


||A−1

0 −A(s)−1||2 ≤ ||A−1
0 ||2

||I −A(s)A−1
0 ||2

1− ||I −A(s)A−1
0 ||2

< ε.

ut

Corollary 1. LetA(s), y(s) be continuous matrix-valued and vector-valued functions, de-
fined for 0 < s < s0 for somes0 ∈ R with lims→0 A(s) = A0 is non-singular.
lims→0 y(s) = y0 iff lims→0 A(s)−1y(s) = A−1

0 y0.



Proof. By lemma 1,lims→0 A(s)−1 = A−1
0 .

By the continuity of matrix multiplication

lim
s→0

B(s)x(s) =
(

lim
s→0

B(s)
) (

lim
s→0

x(s)
)

(the existence of the right hand limits implying the existence of the left hand limit).

If lims→0 y(s) = y0 then letB(s) = A−1(s) andx(s) = y(x).

If lims→0 A(s)−1y(s) = x0 then letx(s) = A(s)−1y(s) andB(s) = A(s), and thus
y0 = lims→0 A(s)(A(s)−1y(s)) = A0x0. ut

Lemma 2. LetA(s), y(s) be matrix-valued and vector-valued polynomials of degreep and
B(s), z(s) be matrix-valued and vector-valued functions that are bounded in the region
0 < s < s0, for somes0 ∈ R. If A(s) is non-singular for0 < s < s0, then

lim
s→0

(A(s) + sp+1B(s))−1(y(s) + sp+1z(s)) = lim
s→0

A(s)−1y(s).

Proof. We first note that fors > 0,

(A(s) + sp+1B(s))−1 = (I + sp+1A(s)−1B(s))−1A(s)−1

SinceA(s) is a polynomial, the entries ofA(s)−1 are rational functions with denominators
of degreep. Thus,lims→0 sp+1A−1(s) = 0, and thus, by the boundedness ofB(s) and
z(s),

sp+1A−1(s)z(s) → 0
sp+1A−1(s)B(s) → 0.

By Lemma 1,lims→0(I + sp+1A−1(s)B(s)) = I. Thus, by Corollary 1,

lim
s→0

(A(s) + sp+1B(s))−1(y(s) + sp+1z(s))

= lim
s→0

(I + sp+1A(s)−1B(s))−1A(s)−1(y(s) + sp+1z(s))

= lim
s→0

A(s)−1(y(s) + sp+1z(s))

= lim
s→0

A(s)−1y(s).

ut

Lemma 3. Let i1 < · · · < iq be positive integers. LetA(s), y(s) be a block matrix and
block vector given by

A(s) =

 A00(s) si1A01(s) · · · siqA0q(s)
si1A10(s) si1A11(s) · · · siqA1q(s)

· · · · · · · · · · · ·
siqAq0(s) siqAq1(s) · · · siqAqq(s)

 , y(s) =

 b0(s)
si1b1(s)
· · ·

siqbq(s)


whereAij(s) andbi(s) are continuous matrix-valued and vector-valued functions ofs with
Aii(0) non-singular for alli.

lim
s→0

A−1(s)y(s) =

 A00(0) 0 · · · 0
A10(0) A11(0) · · · 0
· · · · · · · · · · · ·

Aq0(0) Aq1(0) · · · Aqq(0)


−1  b0(0)

b1(0)
· · ·

bq(0)





Proof. Let P (s) = diag(I, s−i1I, . . . , s−iqI) with the blocks ofP (s) commensurate with
those ofA(s).

P (s)A(s) =

 A00(s) si1A01(s) · · · siqA0q(s)
A10(s) A11(s) · · · siq−i1A1q(s)
· · · · · · · · · · · ·

Aq0(s) Aq1(s) · · · Aqq(s)


and

lim
s→0

P (s)A(s) =

 A00(0) 0 · · · 0
A10(0) A11(0) · · · 0
· · · · · · · · · · · ·

Aq0(0) Aq1(0) · · · Aqq(0)


−1

which is invertible.

Noting thatlims→0 P (s)y(s) =

 b0(s)
b1(s)
· · ·

bq(s)

, we see that our result follows from corollary 1

applied tolims→0(P (s)A(s))−1(P (s)y(s)). ut
We are now ready to state and prove the main result of this section, characterizing the
limiting large-σ solution of Gaussian RLS.

Theorem 1. Let q be an integer satisfyingq < b, and letp = 2q + 1. Letλ = Cσ−p for
some constantC. DefineA

(c)
ij = 1

c!B
t
i (XXt)�cBj , andb

(c)
i = 1

c!B
t
i (Xxt

0)
�c.

lim
σ→∞

(
K + nCσ−pI

)−1
k = v

where

v = (B0 · · · Bq )w (6)
b
(0)
0

b
(1)
1
· · ·
b
(q)
q

 =


A

(0)
00 0 · · · 0

A
(1)
10 A

(1)
11 · · · 0

· · · · · · · · · · · ·
A

(q)
q0 A

(q)
q1 · · · A

(q)
qq

 w (7)

We first manipulate the equation(K + nλI)y = k according to the factorizations in (3)
and (5). Defining

N ≡ diage−
1

2σ2 ||X||
2
, α ≡ e−

1
2σ2 ||x0||2 ,

P ≡ e
1

σ2 XXt

, w ≡ e
1

σ2 Xxt
0 , β ≡ nCσ−p,

(where we omit for brevity the dependencies onσ) we have

K = diag
(
e−

1
2σ2 ||X||

2
)

e
1

σ2 XXt

diag
(
e−

1
2σ2 ||X||

2
)

= NPN

k = diag
(
e−

1
2σ2 ||X||

2
)

e
1

σ2 Xxt
0e−

1
2σ2 ||x0||2 = Nwα

Noting that

lim
σ→∞

e−
1

2σ2 ||x0||2diag
(
e

1
2σ2 ||X||

2
)

= lim
σ→∞

αN−1 = I,



we have

v ≡ lim
σ→∞

(K + nCσ−pI)−1k

= lim
σ→∞

(NPN + βI)−1Nwα

= lim
σ→∞

αN−1(P + βN−2)−1w

= lim
σ→∞

αN−1(P + βN−2)−1w

= lim
σ→∞

(
e

1
σ2 XXt

+ nCσ−pdiag
(
e

1
σ2 ||X||

2
))−1

e
1

σ2 Xxt
0 .

Changing bases withQ,

Qtv = lim
σ→∞

(
Qte

1
σ2 XXt

Q + nCσ−pQtdiag
(
e

1
σ2 ||X||

2
)

Q
)−1

Qte
1

σ2 Xxt
0 .

Expanding via Taylor series and writing in block form (in theb× b block structure ofQ),

Qte
1

σ2 XXt

Q = Qt(XXt)�0Q +
1

1!σ2
Qt(XXt)�1Q +

1
2!σ4

Qt(XXt)�2Q + · · ·

=

 A
(0)
00 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

 +
1
σ2


A

(1)
00 A

(1)
01 · · · 0

A
(1)
10 A

(1)
11 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

 + · · ·

Qte
1

σ2 Xxt
0 = Qt(Xxt

0)
�0 +

1
σ2

Qt(Xxt
0)
�1 +

1
σ4

Qt(Xxt
0)
�2 + · · ·

=

 b
(0)
0
0
· · ·
0

 +
1
σ2


b
(1)
0

b
(1)
1
· · ·
0

 + · · ·

nCσ−pQtdiag
(
e

1
σ2 ||X||

2
)

Q = nCσ−pI + · · · .

Since theA(c)
cc are non-singular, Lemma 3 applies, giving our result. ut

5 The classification function

When performing RLS, the actual prediction of the limiting classifier is given via

f∞(x0) ≡ lim
σ→∞

yt(K + nCσ−pI)−1k.

Theorem 1 determines

v = lim
σ→∞

(K + nCσ−pI)−1k,

showing thatf∞(x0) is a polynomial in the training dataX. In this section, we show
that f∞(x0) is, in fact, a polynomial in the test pointx0. We continue to work with the
orthonormal vectorsBi as well as the auxilliary quantitiesA(c)

ij andb
(c)
i from Theorem 1.



Theorem 1 shows thatv ∈ V≤q: the point affinity function is a polynomial of degreeq in
the training data, determined by (7).∑

i,j≤c

c!BiA
(c)
ij Bt

j = (XXt)�c hence
∑
j≤c

c!BcA
(c)
cj Bt

j = BcB
t
c(XXt)�c

∑
i≤c

c!Bib
(c)
i = (Xxt

0)
�c hence c!Bcb

(c)
i = BcB

t
c(Xxt

0)
�c

we can restate Equation 7 in an equivalent form: Bt
0

· · ·
Bt

q

t



0!b(0)

0

1!b(1)
1
· · ·

q!b(q)
q

−


0!A(0)

00 0 · · · 0
1!A(1)

10 1!A(1)
11 · · · 0

· · · · · · · · · · · ·
q!A(q)

q0 q!A(q)
q1 · · · q!A(q)

qq


 Bt

0
· · ·
Bt

q

 v

 = 0 (8)

∑
c≤q

c!Bcb
(c)
c −

∑
c≤q

∑
j≤c

c!BcA
(c)
cj Bt

jv = 0 (9)

∑
c≤q

BcB
t
c

(
(Xxt

0)
�c − (XXt)�cv

)
= 0. (10)

Up to this point, our results hold for arbitrary training dataX. To proceed, we require a
mild condition on our training set.

Definition 4. X is calledgenericif XI1 , . . . , XIn are linearly independent for any distinct
multi-indices{Ii}.

Lemma 4. For genericX, the solution to Equation 7 (or equivalently, Equation 10) is
determined by the conditions

∀I : |I| ≤ q, (XI)tv = xI
0, (11)

wherev ∈ V≤q.

Proof. By definition,V≤q = span{XI : |I| ≤ q} and, by genericity, the vectorsXI where

|I| ≤ q < b are linearly independent. Thus (11) reduces to a

(
q + d

d

)
×

(
q + d

d

)
system

of linear equations with unique solution, which we will callv. We now show thatv satisfies
(10).

(XXt)�c =
∑
|I|=c

CIX
I(XI)t and (Xxt

0)
�c =

∑
|I|=c

CIX
I(xI

0)
t

∑
|I|=c

CIX
I(XI)tv =

∑
|I|=c

CIX
IxI

0.

and thus(XXt)�cv = (Xxt
0)
�c. ut

Theorem 2. For generic data, letv be the solution to Equation 10. For anyy ∈ Rn,
f(x0) = ytv = h(x0), whereh(x) =

∑
|I|≤q aIx

I is a multivariate polynomial of degree
q minimizing||y − h(X)||.

Proof. Sinceh(X) is the minimizer of||y − h(X)||,

h(X) = (B0 · · · Bq ) (B0 · · · Bq )t
y.



Thus,

h(X)tv = yt (B0 · · · Bq ) (B0 · · · Bq )t
v = ytv

sincev ∈ V≤q.

By Lemma 5,

h(X)tv =
∑
|I|≤q

aI(XI)tv =
∑
|I|≤q

aIx
I
0 = h(x0).

ut
We see that asσ → ∞, the RLS solution tends to the minimum empirical errorkth order
polynomial.

6 Experimental Verification

In this section, we present a simple experiment that illustrates our results. We consider the
fifth-degree polynomial function

f(x) = .5(1− x) + 150x(x− .25)(x− .3)(x− .75)(x− .95),

over the rangex ∈ [0, 1]. Figure 2 plotsf , along with a 150 point dataset drawn by choosing
xi uniformly in [0, 1], and choosingy = f(x)+ εi, whereεi is a Gaussian random variable
with mean 0 and standard deviation .05. Figure 2 also shows (in red) the best polynomial
approximations to the data (not to the idealf ) of various orders. (We omit third order
because it is nearly indistinguishable from second order.)
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f(x), Random Sample of f(x), and Polynomial Approximations

Fig. 2.f(x) = .5(1−x)+ 150x(x− .25)(x− .3)(x− .75)(x− .95), a random dataset drawn from
f(x) with added Gaussian noise, and data-based polynomial approximations tof .

According to Corollary 1, if we parametrize our system by a variables, and solve a Gaus-
sian regularized least squares problem withσ2 = s2 andλ = Cs−(2k+1) for some integer



k, then, ass → ∞, we expect the solution to the system to tend to thekth-order data-
based polynomial approximation tof . Asymptotically, the value of the constantC does
not matter, so we (arbitrarily) set it to be 1. Figure 3 demonstrates this result.

We note that these experiments frequently require settingλ much smaller than machine-
ε. As a consequence, we need more precision than IEEE double-precision floating-point,
and our results cannot be obtained via many standard tools (e.g., MATLAB(TM)) We per-
formed our experiments using CLISP, an implementation of Common Lisp that includes
arithmetic operations on arbitrary-precision floating point numbers.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

0th order solution, and successive approximations.

 
 
 

Deg. 0 polynomial
s = 1.d+1
s = 1.d+2
s = 1.d+3

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1st order solution, and successive approximations.

 
 

Deg. 1 polynomial
s = 1.d+1
s = 1.d+2

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

4th order solution, and successive approximations.

 
 
 
 

Deg. 4 polynomial
s = 1.d+1
s = 1.d+2
s = 1.d+3
s = 1.d+4

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

5th order solution, and successive approximations.

 
 
 
 

Deg. 5 polynomial
s = 1.d+1
s = 1.d+3
s = 1.d+5
s = 1.d+6

Fig. 3. As s → ∞, σ2 = s2 andλ = s−(2k+1), the solution to Gaussian RLS approaches thekth
order polynomial solution.



7 Discussion

Our result provides insight into the asymptotic behavior of RLS, and (partially) explains
Figure 1: in conjunction with additional experiments not reported here, we believe that
we are recovering second-order polynomial behavior, with the drop-off in performance at
variousλ’s occurring at the transition to third-order behavior, which cannot be accurately
recovered in IEEE double-precision floating-point. Although we used the specific details
of RLS in deriving our solution, we expect that in practice, a similar result would hold for
Support Vector Machines, and perhaps for Tikhonov regularization with convex loss more
generally.

An interesting implication of our theorem is that for very largeσ, we can obtain various
order polynomial classifications by sweepingλ. In [5], we present an algorithm for solving
for a wide range ofλ for essentially the same cost as using a singleλ. This algorithm is not
currently practical for largeσ, due to the need for extended-precision floating point.

Our work also has implications for approximations to the Gaussian kernel. Yang et al. use
the Fast Gauss Transform (FGT) to speed up matrix-vector multiplications when perform-
ing RLS [7]. In [5], we studied this work; we found that while Yang et al. used moderate-to-
small values ofσ (and did not tuneλ), the FGT sacrificed substantial accuracy compared
to the best achievable results on their datasets. We showed empirically that the FGT be-
comes much more accurate at larger values ofσ; however, at large-σ, it seems likely we
are merely recovering low-order polynomial behavior. We suggest that approximations to
the Gaussian kernel must be checked carefully, to show that they produce sufficiently good
results are moderate values ofσ; this is a topic for future work.

References

1. Aronszajn. Theory of reproducing kernels.Transactions of the American Mathematical Society,
68:337–404, 1950.

2. Evgeniou, Pontil, and Poggio. Regularization networks and support vector machines.Advances
In Computational Mathematics, 13(1):1–50, 2000.

3. Keerthi and Lin. Asymptotic behaviors of support vector machines with gaussian kernel.Neural
Computation, 15(7):1667–1689, 2003.

4. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Approaches to Machine Learn-
ing. PhD thesis, Massachusetts Institute of Technology, 2002.

5. Rifkin and Lippert. Practical regularized least-squares:λ-selection and fast leave-one-out-
computation. In preparation, 2005.

6. Wahba.Spline Models for Observational Data, volume 59 ofCBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial & Applied Mathematics, 1990.

7. Yang, Duraiswami, and Davis. Efficient kernel machines using the improved fast Gauss transform.
In Advances in Neural Information Processing Systems, volume 16, 2004.


